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a b s t r a c t

Expanded tandem repeat sequences in DNA are associated with at least 40 human genetic neurological,
neurodegenerative, and neuromuscular diseases. Repeat expansion can occur during parent-to-offspring
transmission, and arise at variable rates in specific tissues throughout the life of an affected individual.
Since the ongoing somatic repeat expansions can affect disease age-of-onset, severity, and progression,
targeting somatic expansion holds potential as a therapeutic target. Thus, understanding the factors that
regulate this mutation is crucial. DNA repair, in particular mismatch repair (MMR), is the major driving
force of disease-associated repeat expansions. In contrast to its anti-mutagenic roles, mammalian MMR
curiously drives the expansion mutations of disease-associated (CAG)·(CTG) repeats. Recent advances
have broadened our knowledge of both the MMR proteins involved in disease repeat expansions, includ-
ing: MSH2, MSH3, MSH6, MLH1, PMS2, and MLH3, as well as the types of repeats affected by MMR,
now including: (CAG)·(CTG), (CGG)·(CCG), and (GAA)·(TTC) repeats. Mutagenic slipped-DNA structures
have been detected in patient tissues, and the size of the slip-out and their junction conformation can
determine the involvement of MMR. Furthermore, the formation of other unusual DNA and R-loop struc-
tures is proposed to play a key role in MMR-mediated instability. A complex correlation is emerging
between tissues showing varying amounts of repeat instability and MMR expression levels. Notably, nat-
urally occurring polymorphic variants of DNA repair genes can have dramatic effects upon the levels of
repeat instability, which may explain the variation in disease age-of-onset, progression and severity. An
increasing grasp of these factors holds prognostic and therapeutic potential.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Gene-specific repeat expansions are the cause of 43 genetic dis-
eases, 27 of which are known to be affected by MMR (Table 1).
In non-affected individuals, repeat tracts are short and genetically
stable, while long, expanding repeats occur in affected individuals.
Larger and ongoing expansions reduce the age-of-onset, and drive
disease progression and severity.

Many DNA metabolizing pathways have been assessed for
their contribution to disease-associated repeat expansions, includ-
ing DNA replication, base excision repair (BER), double-strand
break repair, nucleotide excision repair (NER), and recombination
(reviewed in Refs. [1,2]). MMR is the strongest driver of repeat
expansions (reviewed in Refs. [2,3]). Despite it’s role as an anti-
mutation system, in certain circumstances, MMR can also drive
mutations required for immune system development [3] (reviewed
by Zanotti and Gearhart in this Special Issue) or for disease-causing
repeat mutations. Some MMR proteins have striking effects on
repeat instability (Table 2).

Most studies of repeats in bacteria, yeast, and flies reveal that
MMR either has no effect or has a different effect than what occurs
in mammals, including affected families [5–7]. This review focuses
upon recent advances of how mammalian MMR is involved in
disease-associated repeat instability, with limited coverage in other
systems.

2. Disease-associated repeats tend to expand

2.1. MMR promotes instability of (CAG)·(CTG) repeats in vivo

The frequency and tissue-specificity of (CAG)·(CTG) expansions
in transgenic mice closely reflects the pattern in affected humans.
Evidence for a role of MMR protein MutS� (MSH2-MSH3) on
(CAG)·(CTG) instability is supported by the requirement of MSH2
for the near 100% repeat expansions in a Huntington’s disease
(HD) and four myotonic dystrophy type 1 (DM1) transgenic mice
[2]. A genetic loss of MSH2 completely ablates CAG expansions
[8]. Similarly, a deficient MSH2 ATPase domain, that impairs
MMR, also ablates repeat expansions [9]. Thus, MSH2’s role in
repeat expansions is not limited to binding and stabilization of
CAG hairpins [10]. Deficiency of MSH3 in DM1 and HD mice
suppresses expansions [11,12], an effect that is MSH3-dose depen-
dent [12]. Conversely, MSH6 is not required in (CAG)·(CTG)
expansions, discussed further in the Contractions section
below.

Both MutL� (MLH1-PMS2) and MutL� (MLH1-MLH3) are
involved in driving (CAG)·(CTG) expansions in vivo [4,13,14]:
Pms2-null mice show up to a 50% decrease in somatic expan-
sions and increased frequency of large, albeit rare, contractions,
while in vivo deficiencies of MLH1 or MLH3 completely ablate
CAG expansions [4]. The effect of MutL� may be less than that

of MutL�, since deficiency of PMS2 had less impact on insta-
bility than deficiency of MLH3. Nonetheless, both subunits of
hMutL� (hMLH1 and hPMS2) are required for in vitro processing
of short, but not long (CAG)·(CTG) slip-outs [15]. Thus, the MutL
complexes may play similar but not equal roles in (CAG)·(CTG)
instability.

Cellular models also revealed a requirement of MMR in repeat
instability: knocking down MutS� in Friedreich’s ataxia (FRDA) or
DM1 patient-derived cells blocked (GAA)·(TTC) and (CAG)·(CTG)
expansions, respectively [16,17]. Interestingly, knocking down
MutS� suppressed (CAG)·(CTG) expansions, while absence of
MutS� leads to expansions exceeding 200 repeats, possibly due
to MutS� upregulation [18]. Expression of MMR proteins natu-
rally coincides with (CAG)·(CTG) expansions, as observed in human
embryonic stem cells (hESCs) derived from oocytes and sperm of
DM1 and HD parents [19]. In these hESCs, the expression level of
MMR proteins coincides with active CTG instability [19]. Upon dif-
ferentiation of the hESCs, a loss of MMR protein expression was
concomitant with stabilization of the repeat [19]. Thus, timing of
MMR protein expression is likely important in mediating repeat
expansions.

The effects of MMR on (CAG)·(CTG) instability in yeast are
strikingly different from mice and humans. Yeast predomi-
nantly display (CAG)·(CTG) contractions, with rare expansions
[5,6,19a–c] (contractions at 10−3/generation versus expansions
at 10−5/generation). This contrasts humans, who display a near-
absolute expansion bias. Expansions in yeast do not appear to be
affected by MMR, where a loss of MSH2 or MLH1 does not alter
repeat instability [5,6,19a]. Schweitzer & Livingston found that defi-
ciencies of MSH2 or PMS1 (the yeast homolog of PMS2) led to
increased levels of contractions and a mild increase of +1 repeat
expansions [19b]. Using a yeast model that reports only expan-
sions or only contractions, the Lahue lab did not find any effect
for a loss of MSH2 [6,19a]. Interestingly, using the expansion-only
model of Lahue, the Surtees lab confirmed that a loss of MSH2
had no effect, however a loss of MSH3 decreased expansions (10−5

to 10−6) while a loss of MSH6 increased expansions decreased
(10−5 to 10−4), the effect upon contractions was not reported
[19c].

2.2. Tissue-specificity of repeat instability— a role for DNA repair?

The size of an unstable repeat tract varies between tissues of
an affected individual [1–3,20], with the largest expansions aris-
ing in the most severely affected tissues. This supports the concept
that somatic expansions occur as an individual ages, driving dis-
ease progression and severity. The source of this tissue-specific
instability has been an area of intense research, but remains poorly
understood (reviewed in Refs. [1,3,20]). Genetic ablation of MutS�,
MLH1, MLH3, and to a lesser degree PMS2, can suppress CAG expan-
sions in all tissues. Genetic deficiencies of other repair proteins can
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Table 1
Disease-associated unstable repeats affected by mismatch repair.

Repeat-associated disorder Gene(s)

(CAG)n·(CTG)n - 16 disease loci
SBMA: spinal and bulbar muscular atrophy AR
HD: Huntington’s disease HTT/HTTAS
HDL2: Huntington’s disease-like 2 JPH3/JPH-AS
Spinocerebellar ataxias: SCA1, SCA2,

SCA3/MJD, SCA6, SCA7, SCA8, SCA12, SCA17
ATXN1, ATXN2 or KCNN3, ATXN3/MJD, CACNA1-A, ATXN7/ATXN7-AS, ATXN 8/ATXN8-AS, PPP2R2B,
ATXN17 (respectively)

Schizophrenia, Bipolar disorder KCNN3
Fuch’s Endothelial Corneal Dystrophy 2 FECD2
DM1: myotonic dystrophy type 1 DMPK/DMPK-AS
Dentatorubropallidoluysian atrophy ATN1
Breast cancer risk factor AIB1, also known as NCOA3, SRC-3, ACTR, pCIP, RAC3, and TRAM1

(GAA)n·(TTC)n - 1 disease locus
FRDA: Friedreich’s ataxia FXN/FAST-1

(CGG)n·(CCG)n - 10 disease loci
FRAXA: fragile X syndrome/fragile X

tremor/ataxia syndrome
FMR1/FMR1-AS

FRAXE,FRAXF: fragile X syndrome FMR2,FRM3
Various neurological phenotypes or

developmental delays/intellectual
disabilities

FRA2A, FRA7A, FRA10A, FRA11A,
FRA11B, FRA12A, FRA16A

Table 2
MMR protein functions and effects on (CAG)·(CTG) instability.

Gene/Protein Function(s) Repeat length effect Mouse germline/somatic instability

MSH2 MutS�/MutS� complex component ↑ Repeat length
√√√

MSH3 Forms MutS� complex with MSH2 ↑ Repeat length
√√√

MSH6 Forms MutS� complex with MSH2 Stabilize/↓ repeat length –
MLH1 Part of MutL�, MutL� and MutL� ↑ Repeat length

√√
MLH3 Forms MutL� complex with MLH1; endonuclease ↑ Repeat length

√√
PMS2 Forms MutL� complex with MLH1; DNA endonuclease ↑ (CAG) or (CGG) length ↓ (GAA) length

√
MCM9 Initiation of replication and factor in homologous

recombination repair
Stabilize repeat length

√√√

PCNA Helps load exonuclease 1; recruits pol� and ligase1 to
fill in gap

Possible stabilization of repeat length Unclear

RPA Single-stranded binding protein Unknown Unknown
LIG1 Ligates nicked DNA fragments following replication

and/or repair
↑ Repeat length

√
(Maternal germline)

affect CAG instability, in some, but not all tissues of transgenic mice
[21,22]. Thus, tissue-specific patterns of CAG instability may arise
by different mechanisms.

Towards identifying factors responsible for the tissue-specific
CAG instability patterns, several groups found that stoichiomet-
ric levels of repair proteins are associated with variable levels
of CAG instability between the striatum and cortex of HD mice
[23,24]. This is supported by tissue-specific gene expression of
various repair genes in mice and humans [25]. However, levels
of repair protein expression may not be the only factor affecting
tissue-specific instability: expression levels of MMR genes have
been associated with CAG expansions in some cases [19]. Analysis
of 14 different mouse tissue types revealed widely varying levels
of MMR proteins between tissues, but no clear correlation with
CAG expansion levels [26]. Thus, MMR protein levels may affect
repeat instability in some, but not all, tissues. In the HD-susceptible
medium spiny striatal neurons, MSH2 can drive both CAG expan-
sions and disease marker expression, which can be blocked by
deficiency of MSH2 [27a]. These findings provide support for the
role of MSH2 as a promoter of disease by driving CAG expan-
sions. A possible factor that may mediate the tissue-specific CAG
instability may be the tissue-specific chromatin packaging of the
repeat. Interestingly, the activation of MutSa can be determined by
specific chromatin modifications [27b]. Future research must con-
tinue to search for factors regulating tissue-specific patterns of CAG
expansions.

2.3. MMR promotes instability of (CGG)·(CCG) and (GAA)·(TTC)
repeats

Might MMR treat other expandable disease-associated repeats
in a manner similar to (CAG)·(CTG) repeats? MMR modifies insta-
bility of expanded (CGG)·(CCG) repeats, associated with fragile X
syndrome (FXS) and fragile X tremor ataxia syndrome (FXTAS).
Somatic and germline expansions of unmethylated premutation-
length CGG tracts can arise in human and murine tissues, and
increase with age [28–30]. In adult patients, the fully-methylated
expansions appear somatically stable [28,31,32]. In mice, expan-
sions of these unmethylated repeats depend upon MSH2 and
MSH3, and the effects were dose-dependent, as Msh2- or Msh3-
hemizygosity showed intermediate levels of expansions [30].
Notably, an absence of MSH2 or MSH3 increased germline and
somatic CGG contractions [33].

Both MutS� and MutS� drive (GAA)·(TTC) expansions in
patient-derived FRDA cells [16,34,35]. However, MSH2 and MSH3
are not required for intergenerational (germline) GAA repeat
expansions [36], which is in stark contrast with their abso-
lute requirement for (CAG)·(CTG) and (CGG)·(CCG) expansions
(germline and somatic). MutS� and MutS� seemed to protect
against germline GAA repeat contractions, similar to (CAG)·(CTG)
repeats [36], while PMS2 protected against germline GAA expan-
sions, and promoted contractions [36].

MLH1 and PMS2 have been suggested to mediate transcrip-
tion of the FXN gene by unknown mechanisms [37], which may
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suggest the involvement of MMR upon transcription-mediated
instability, as well as repair. Mice deficient in MLH1 or PMS2
also exhibit reduced intergenerational and somatic GAA expan-
sions [37]. Curiously, MLH1 and PMS2 appear to have opposing
effects on (GAA)·(TTC) instability: MLH1 promotes expansions,
while PMS2 suppresses large expansions [38]. Interestingly,
PMS2 suppressed (GAA)·(TTC) expansions in tissues with MutS�-
dependent instability [38], indicating that PMS2 and MutS�
may overlap in the DNA lesions or structures targeted for
repair.

The reason MMR handles (GAA)·(TTC) repeat instability so dif-
ferently from its handling of (CAG)·(CTG) or (CGG)·(CCG) repeats in
germline transmissions, may be due to the mutagenic structures
formed by (GAA)·(TTC) repeats. Expanded (GAA)·(TTC) repeats
can form intramolecular triplexes: (GAA)·(GAA)·(TTC), which may
block replication fork progression [39]. Alternately, (GAA)·(TTC)
instability may involve aberrant processing of R-loop structures,
revealed to form on expanded repeats of the FXN and FMR1
genes in patient cells [40]. Tandem copies of the integrated
transgene each containing GAA tracts in mice [37] may permit
unusual structure formation [41]. These findings reinforce the
need to examine unusual structures formed by (CGG)·(CCG) and
(GAA)·(TTC) expanded repeats, the ability for MMR, and other pro-
teins to process these structures, and their combined effects on
repeat instability, transcriptional activity, protein expression and
disease progression.

3. Structural effects on repeat instability

3.1. Expanded repeat sequences form unusual DNA structures

Repeat sequences can form various unusual DNA or RNA:DNA
structures (Figs. 1 and 2). Such structures may form during pro-
cesses that unwind the DNA, including replication, recombination,
repair, and transcription. These structures may be aberrantly pro-
cessed leading to repeat instability. Formation of slipped-DNAs has
been observed in vitro with (CAG)·(CTG) repeats [42,43]. Individ-
ual or clustered slip-outs can arise with excesses of either (CAG)
or (CTG), and may have variable numbers of slipped repeat units
(Fig. 1). In vivo evidence of slipped-DNA has been seen during
DNA replication in cell models of CAG instability using hairpin-
specific zinc-finger nucleases [44]. Slipped (CAG)·(CTG) DNAs are
present at the DM1 disease locus in patient tissues [45]. Strikingly,
allelic levels of slipped-DNA-containing molecules were greater
in affected tissues that showed the highest levels of expansions,
compared to lower levels of slipped-DNAs in non-affected tis-
sues with smaller expansions. This finding strongly supports an
in vivo involvement of slipped-DNAs in somatic repeat instability
in humans.

Other unusual DNA or RNA:DNA structures may also be crit-
ical to MMR-mediated instability. For example, the (CGG)·(CCG)
repeat of FXS has been shown to form slipped-DNAs, hairpins, G-
quadruplexes, and Z-DNA [46], while the (GAA)·(TTC) repeat of
FRDA can form hairpins and triple-stranded structures; both of
these repeats have recently been shown to be affected by MMR
[29,30,47,48]. In vivo evidence for these structures of the fragile X
disease (FXD) or FRDA repeats, or their involvement in repeat insta-
bility has, to date, remained elusive. R-loops, or RNA:DNA hybrids
(Fig. 2), can form during unidirectional or bidirectional transcrip-
tion [49] across (CAG)·(CTG), (CGG)·(GCC), (GAA) but not (TTC), and
(G4C2)·(G2C4) repeats, and persist following transcription [40,50].
Processing of R-loops at repeats may lead to instability, which could
involve the formation and processing of slipped-DNAs (Fig. 2).

3.2. Mechanism of MMR-mediated expansions: slip-out size &
junction conformation matters

The involvement of MMR in processing slipped-(CAG)·(CTG)
repeats depends upon the size of the slip-out: specifically, shorter
slip-outs depend upon MutS� (MSH2-MSH3), while longer slip-
outs do not (Fig. 1A). MutS� is required for repair of isolated, short
slip-outs (1–3 excess repeat units) [51], while slip-outs with >3–25
excess repeat units are processed independently of MMR [52,53].
The effect of slip-out size on repair efficiency was confirmed [53],
however an involvement of MMR was not seen for these repeat
slip-outs, likely because the shortest slip-out size examined had
an excess of 5 repeats, which is beyond the length threshold of
≤3 excess repeat units, identified as a requirement of MutS� [51].
The role of slip-out size in determining MMR involvement, initially
identified for MutS� [51] has been extended to the MutL� (MLH1-
PMS2) MMR endonuclease [54]. MutL� can be activated on DNA
containing a MutS�- or MutS�-bound DNA-lesion, in conjunction
with proliferating cell nuclear antigen [54]. Short MutS�-bound
slip-outs of 2–3 (CAG)n or (CTG)n repeat units can trigger MutL�
activation and subsequent repair, a reaction that is biased for nicked
DNA strands [53,54]. However, in the absence of a pre-existing
nick, MutL� may incise either of the DNA strands harbouring a
short slip-out, leading to repair that occurs without an obvious
strand bias—a potential source of repeat instability [54]. Curiously,
in vitro studies did not reveal an obvious requirement of human
MutL� (MLH1-MLH3) [4,15], which contrasts with the apparent
absolute requirement of murine MLH3 in HD mice [4]. Together,
the requirement of short-slip-outs (isolated or clustered) to involve
both MutS� and MutL� are consistent with the role of short slip-
outs in repeat expansions.

Clusters of short slip-outs with 1–3 excess repeat units along a
molecule, require MutS� for initiation of repair, but are not effi-
ciently repaired. This may be due to closely clustered slip-outs
acting as blockades to repair of adjacent slip-outs (Fig. 1C) [51].
Patient tissues harbor clustered slip-outs [45]; aberrant processing
of these may lead to expansions that can occur in the absence of
DNA replication.

Slip-out junction conformation can affect repair outcome.
Slipped-junctions can have fully base-paired junctions, or junctions
with 1–2 unpaired nucleotides opposite the slip-out [55] (Fig. 1B).
These junction conformations are in dynamic inter-converting
equilibrium with each other. Different junction conformations may
confuse the MMR system: a lesion present on only one strand (a
fully paired slip-out without unpaired nucleotides on the opposite
strand) may be processed differently from a slip-out that also con-
tains 1–2 unpaired nucleotides opposite the slip-out. In the latter
case, repair may be directed to the incorrect strand, resulting in
MMR-mediated mutagenic repeat expansion [55].

Repeat expansions are likely the result of accumulated short
incremental expansions. Until recently, it was unclear whether
repeat expansions arise from large jumps of repeats during a single
mutation event or by multiple stepwise increases of short expan-
sions. Saltatory large jumps of expansions have been observed in
bacteria [56]. However, since human MutS� is required to repair
short repeat slip-outs suggests that the increment of change dur-
ing a single mutagenic step might be 1–3 repeat units, similar to
those occurring at other simple repeat sequences such as (CA)n
and (A)n repeats [57,58]. Limited evidence from patient tissues
supports incremental changes [59–62]. An elegant study in yeast
strongly supports that net increases of CAG expansions are the
result of small incremental expansions in the presence of MMR [63]
and these incremental expansions may be affected in the absence
of MMR [19b]. Aberrant processing of slipped-DNAs may involve an
orchestration between the proofreading exonuclease activity poly-
merase � (Pol�) and polymerase � (Pol�), whereby Pol� allows
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Fig. 1. Unusual DNA structures implicated in repeat instability and MMR processing. Mispairing and re-annealing of complimentary repeat strands following unwinding
of the DNA may lead to the formation of slipped DNA structures. (A) Repeat sequences may snap-back or pair with themselves while transiently single-stranded, leading to
the formation of loop-outs (red) or hairpin structures (blue), which are targets for MMR. MutS� is implicated to be involved in recognition and processing of these slipped
DNAs, with a preference for short (CNG) slip-outs containing ≤ 3 extruded repeat units. MutS� also plays a role in repair of short repeat slip-outs, however its contribution
to repair of these slipped-DNA structures is less than MutS� (B) Slipped-DNAs form interconverting conformations of three-way junctions. Unpaired nucleotides may arise
in either of junction arms (yellow), or opposite the slip-out (pink); the resulting conformation may affect binding by MMR proteins and correct repair processing. Junctions
containing unpaired nucleotides opposite the slip-out could be mistakenly treated as the lesion, rather than the slip-out. (C) Clustered slip-outs may form on one or both
strands of the DNA; adjacent slip-outs are poorly repaired, possibly due to bulky structure interference. Clustered slip-outs have been detected in patient tissues at the DM1
disease locus (Axford et al. [45]).
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Fig. 2. Proposed mechanism of repeat expansion mediated by R-loops and MMR. Expanded repeat-containing DNA is unidirectionally or bidirectionally transcribed. The
RNA transcript remains bound to the template DNA, forming a stable RNA:DNA hybrid (R-loop). Unpaired single stranded DNA in single-R-loops may anneal with itself at
this point, forming unusual structures. Removal/degradation of the R-loop pre-disposes repetitive DNA to misalignment upon re-annealing, providing the opportunity for
further unusual DNA structures, such as slip-outs, to form. These structures are recognized by MMR proteins, in particular MutS�, and undergo repair, leading to instability
and possible disease-associated repeat expansions.

Pol� to escape excision, promoting further expansion [64]. Such
activities may lead to short incremental expansions.

Expansions can arise in DNAs devoid of pre-formed struc-
tures. Incubating a fully-duplexed (CAG)22·(CTG)22 repeat in a
yeast shuttle vector in human cell extracts can lead to expansions
detectable in a sensitive yeast screen [65]. Expansions arose at
frequencies of 1/1000–12/1000 plasmids, with increases of 4–18
repeats. Expansions did not require either replication or MutSbeta,
however frequencies were enhanced in the presence of MutS�.
While not demonstrated, the authors presumed that expansions
arose via mis-repair of DNA damage induced by the human cell
extract. Reconstitution in vitro of this mutagenic pathway provides
potential for mechanistic evaluation of repeat expansions and con-
tractions.

3.3. MutSˇ interaction with repeat tracts: crystal structure of
MutSˇ-DNA

Unraveling how MutS� can cause repeat instability can be
enhanced by an understanding of its recognition and bind-
ing of slipped-DNAs. (For further reading, see articles by
Schmidt & Hombauer and Lee et al. in this Special Issue.)
MutS� is involved in at least three distinct processes: repair
of insertion-deletion loops, of which (CAG)·(CTG) repeats are
a unique set that can be aberrantly repaired to expansions
(this review); in yeast, where MutS� acts in double-strand
break repair by binding 3′DNA-overhangs at the breaks and tar-
geting them for excision, and thirdly, repair by single-strand
annealing [66].

MutS� has been crystalized in complex with DNAs containing
insertion-deletion (CA)n loops of 2, 3, 4, and 6 extra nucleotides
[67]. The structure reveals insight into MutS�’s unique DNA-
binding mode, distinct from MutS� and bacterial MutS; how MutS�
can function in processing both insertion-deletion loops of vary-
ing size, as well as of 3′-ends in single-strand annealing. Notably,
MutS� interacts with both DNA strands 5′ of the insertion deletion

loops, but only the loop-containing strand 3′ of the loop (Fig. 3).
This binding mode suggests that the loop is essentially equivalent
to a 3′ overhang. The 5′ duplex and loop regions are contacted by
MSH3 clamp domain (I), followed by stacking of the MSH2 Pheny-
lalanine42 on the 4th base of the loop, while the 3′ loop strand in the
duplex region is contacted by the MSH3 mismatch-binding domain
(IV).

Awareness of the MutS�-DNA contacts is likely to be crucial
to proper repair or mutation outcome of DNA structures. Binding
by MutS� is mediated by the MSH3-conserved Tyrosine245-
Lysine246 pair, not present in either MutS� or the bacterial
MutS protein, implying that this binding mode may define
the distinct roles of MutS� over MutS�. Tyr245 interacts with
nucleotides on the strand opposite the loop at the double
stranded/single stranded (ds/ss) DNA junction, while Lys246 inter-
acts with the loop strand on its 5′ end. Notably, the critical
function of these residues was predicated, as mutations of the
homologous residues in the yeast Msh3 gene, Tyrosine157 and
Lysine158, caused a mutator phenotype and microsatellite insta-
bility [68,69].

How can MutS� bind loops of various sizes? For DNA loops
longer than three nucleotides, the Phe42 of MSH2 forms a �-stack
with the fourth unpaired base. The direct interaction of domains
I of MSH2 and MSH3 are the same for various loop sizes (Fig. 3).
Importantly, different loop sizes fit into the MutS� binding pocket,
whereby the DNA bending angle is tighter for longer loops; in this
manner MutS� can accommodate longer loops. As predicted [69]
and shown by footprinting [70], the MutS� complex bends the
looped substrate upon binding, where the bending angle increased
from 90◦ for (CA)1 to 120◦ for (CA)3 in the hMSH� complex [67].
Based upon the hMutS�-(CA)2–6 crystal structure and the yMutS�-
(GT)4 footprinting from the Alani lab [68,70], it would seem that the
extra nucleotides in longer loops or slip-outs beyond the first four
nucleotides following the ds/ss junction (demarcated by the MSH2
Phe42), toward the 3′ end, would be unbound by MutS� and be free
and exposed to solvent or nuclease cleavage (MutL�). Similarly, for
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Fig. 3. Binding of MutS� components MSH2 and MSH3 to slipped-DNA. Binding by MutS� to DNA loops reveals how the complex can bind looped-DNAs of various sizes,
and DNAs with 3′ overhangs. In the crystal structure of MutS�, the MSH2 Phenylalanine42 (F), which forms a �-stack with the fourth unpaired base for loops of n = 3, 4, and
6 extra nucleotides, is separated by precisely 4 nucleotides from the MSH3 Tyrosine245-Lysine246 pair (YK), which stack upon the terminal base-pairs of the duplex just 5′

of the loop. See text for details and Gupta et al. [67].

a 3′ overhang substrate, the unpaired nucleotides beyond the first 4,
following the ds/ss junction would also be free and exposed to sol-
vent or nuclease cleavage (MutL� or XPF-ERCC1, known to interact
with MutS� in ssDNA annealing.) [66].

While the crystal structure of the human MutS� and foot-
printing of the yeast MutS� on (CA)- and (GT)-loops, respectively,
present similar binding modes, the same is not true for other
substrates. Curiously, footprinting of hMutS� on a (CA)4 loop
showed complete protection of most of the loop-out and both
branch arms [71]. Equally surprising was the almost complete
footprint protection of a (CAG)13 hairpin, with an un-protected
5′ loop region [71]. Both of these strikingly different maps
suggest that the binding mode of MutS� may differ for dif-
ferent sequences; even complementary repeat sequences may
differ.

3.4. Transcription-mediated instability and a role for MMR

Transcription of repeat sequences, which occurs in non-
replicating cells that incur expansions, can lead to repeat instability.
Bidirectional transcription in a human cell model has been seen
to increase instability over unidirectional ([72–76] and citations
therein). This instability may arise from RNA:DNA hybrids (R-
loops, Fig. 2) formed between the nascent RNA and the template
DNA strand. R-loops can form following unidirectional transcrip-
tion (single-R-loops) or convergent, bidirectional transcription
(double-R-loops). Notably, all disease repeat loci studied to date
have revealed convergent bidirectional transcription across the
repeat tracts. Single R-loops have been observed in vitro at the
following repeats: CAG, CTG, CGG, CCG, GAA (but not TTC), the
GGGGCC, and GGCCCC repeats [50,77]. Double-R-loops have been
observed in vitro at the (CAG)·(CTG) and (CGG)·(CCG) [50]. R-
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loops have also been detected by anti-RNA:DNA hybrid antibody
immunoprecipitations at the FXS and FRDA loci in patient cells
[40].

Evidence from bacterial and in vitro assays using human cell
extracts suggests that aberrant processing of R-loops can lead
to repeat instability [73]. The mechanism by which this is per-
petuated is not established, however transcription presents an
opportunity to form slip-outs, hairpins, quadruplexes and other
unusual structures in the displaced non-template strand. Further-
more, transcription leading to R-loop formation allows ssDNA to
temporally persist, and upon removal of the R-loop, presents the
opportunity for misaligned reannealing of the DNA strands lead-
ing to slip-out formation. The resulting unusual DNA structures are
targets for aberrant MMR and downstream instability, as discussed
above (Fig. 2).

Evidence revealing a direct involvement of MMR proteins in
transcription-associated repeat instability is limited, but supported
by the finding that knockdown of MSH2 or MSH3, but not MSH6
in human cells decreases CAG and GAA instability following tran-
scription [35,78]. Knockdowns of Cockayne Syndrome protein B
(CSB/ERRCC6 - required for transcription-coupled NER) and of
MutS� reduced CAG contractions [78], while knockdowns of R-loop
processing RNases H1 and H2A enhanced contractions [74]. Pro-
cessing of R-loops may involve formation of slipped-DNAs, whose
processing by MMR proteins may lead to instability. The complex
interactions between transcription progression, DNA topology,
and repair factors in repeat instability, are deserving of future
attention.

4. Contractions of expanded repeat sequences

4.1. MMR deficiencies can lead to (CAG)·(CTG) and (CGG)·(CCG)
contractions

Contractions of inherited repeat expansions are of clinical inter-
est. Typically, (CAG)·(CTG) repeats tend to expand, but rare families
with DM1, HD, spinocerebellar ataxia 1 (SCA1) or spinobulbar mus-
cular atrophy (SBMA) display high levels of contraction of the
expanded repeat (reviewed in Ref. [1]). In transgenic (CAG)·(CTG)
mice, deficiencies of MSH2 or MSH3, but not MSH6, led to a striking
switch from an expansion bias to a contraction bias in transmit-
ted and somatic tissues [79–84]. Not all all mouse lines display this
switch to a contraction bias, but are stabilized [8]—suggesting a link
of MMR with a cis-element. MSH6 may protect against paternally-
transmitted contractions [11] and its absence in some cell models
can lead to increased somatic expansions [18]. Thus, MutS� may
be an antimutator of CAG repeats, which in the absence of MSH6,
could result in increased available MSH2 for binding to MSH3, form-
ing the expansion-driving MutS� complex [18,83]. DNA Ligase I
may also be involved in protecting against repeat contractions, as a
CTG contraction bias for maternal transmissions was observed for
DM1 mice on a defective Ligase I background (46BRLigIm/m) [22].
MSH2 also seems to protect against contractions of premutation
CGG repeats [30]. Little is known regarding contraction mecha-
nisms of expanded repeat tracts. Understanding the process of
repeat contractions is important, since harnessing this process may
be clinically beneficial.

4.2. Polymorphisms in DNA repair genes can regulate levels of
(CAG)·(CTG) instability

An exciting advance is the recent discovery that polymorphic
variants of DNA repair genes can modulate levels of (CAG)·(CTG)
repeat expansions. This was first reported in HD mice, where the
levels of CAG expansions (transmitted and somatic) depended upon

mouse strain background [12]. Strikingly, the high levels of CAG
expansions observed in the C57BL/6J (B6) background, were com-
pletely lost when the background was switched to a BALB/cByJ
(CBy) background, even though both strains were MMR-proficient.
The loss of expansions in the CBy background was as blatant as
an MSH2-deficiency on the B6 background. The source of variable
CAG instability levels mapped tightly to polymorphic variants of
the Msh3 gene, specifically, MSH3 protein was highly expressed
in the B6 but not CBy strain, leading to high levels of CAG expan-
sions or stability, respectively. A genome-wide association study
identified a large genomic region harboring the Mlh1 gene as a
possible source of HD mouse strain-specific variations in CAG insta-
bility [4]. These polymorphic variations in DNA repair genes may
explain the previously observed mouse strain-specific variations
of repeat instability [83,85]. In humans, polymorphic variants in
DNA repair genes are likely sources of variable instability and dis-
ease onset, progression, and severity. Several recent analyses have
identified polymorphisms in various DNA repair genes with levels
of CAG instability in several diseases [86,87]. The clinical implica-
tions that polymorphisms in DNA repair genes may modify levels of
CAG instability are far reaching: such polymorphisms may explain
the variable levels of disease age-of-onset, disease progression and
severity, which may be driven by the highly variable levels of repeat
instability between individuals [88]. To this degree, the diagnosis
of inheriting a disease-associated repeat expansion, may eventually
be prognostically tempered (positively or negatively) with associ-
ated DNA repair gene variants.

5. Conclusions & future goals

Mismatch repair proteins MSH2, MSH3, MLH1, MLH3, and to
a lesser extent PMS2, are the strongest drivers of (CAG)·(CTG)
expansions. Similar, but not identical effects are played by MSH2
and MSH3 for (CGG)·(CCG) and (GAA)·(TTC) repeats. Considering
the variety of repeat sequences associated with the greater than
forty repeat diseases, it is intriguing to consider whether MMR
treats other repeat sequences in a similar manner. The process by
which MMR drives repeat expansions likely involves errors dur-
ing repair of slipped-DNAs or endogenously damaged DNA. While
many repair proteins have been assessed for their involvement in
repeat instability, gaps in our knowledge remain, such as iden-
tifying the initiation of instability, or factors that process large
slip-outs, small and large jumps in size, are fodder for future inves-
tigations. Identification of specific DNA repair gene polymorphisms
that enhance or supress repeat expansions that may hold prognos-
tic value for affected families. Elucidating the mechanism by which
MMR can switch high levels of repeat expansions to high levels
of contractions, will prove insightful towards inducing repeat con-
tractions. Enhancement of repeat contraction-inducing processes,
possibly by modulation of DNA repair, may present therapeuti-
cally beneficial outcomes [2] and is a long-term future goal of
understanding the role of DNA repair in disease-associated repeat
instability.
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