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Towards development of an in vitro repair assay of the ALS-associated C9orf72 repeat 
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The nick in the 
DNA backbone 
d i r e c t s r e p a i r 
machinery.  

Thus, efficiency of 
nick-induction in 
pur i f ied , l i near 
substrates must 
b e d e t e r m i n e d 
prior to use of the 
substrate in the in 
vitro repair assay.  

The NEase assay 
will be used to 
quantify [nicked]:
[non-nicked] linear 
substrate present 
in a sample.

The expanded C9orf72 repeat is the leading genetic cause of amyotrophic 
lateral sclerosis (ALS) and frontotemporal dementia (FTD).  
The repeat exists over a polymorphic range of lengths, and when expanded, is 
prone to further instability (expansion or contraction). Unaffected individuals usually 
carry between 2 - 20 of these repeats, while clinically affected individuals generally 
present with >90 repeats. 

R e c e n t w o r k i n o u r l a b 
d e m o n s t r a t e d t h a t t h e 
expanded C9orf72 repeat 
forms quadruplex structures in 
both the G-rich and C-rich 
strands (Zamiri, Mirceta et al., 2015).  

The effects of binding by DNA 
metabolic proteins to these 
structures on DNA repair is 
unknown.  

The in vitro repair assay will 
p r o v i d e a n a v e n u e f o r 
assessment of the effects of 
proteins on these structures 
and the DNA products resulting 
from metabolism. 

Figure 1. Purified linear DNA fragments containing 6 or 25 repeats were alkaline 
denatured and slowly renatured allowing formation of slipped-DNAs (S-DNAs) 
and SI-DNAs. S-DNAs result from slip-out formation in both strands containing the 
same number of repeats. SI-DNAs result from renaturation of two strands, each 
containing a different number of repeats: (G4C2)6 + (G2C4)25 or (G4C2)25 + (G2C4)6 
(upper and lower bands, respectively).
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Previous use of the in vitro repair assay with (CAG•CTG) substrates provides a reference 
for expected outcomes, as visualized by Southern Blot: 

Figure 3. Preliminary 
results show changes 
in DNA structure  
composition following 
in vitro repair.  
SI-DNAs containing  
∆(G4C2•G2C4) = 19 
underwent in vitro repair 
with HeLa cell extract.  

In lane 1, “Start”, it is seen 
that PAG-pure SI-DNAs 
contain some amount of  
homoduplexed and S-DNA 
contaminant of both lengths  
of the constituent DNAs 
(6 and 25 repeats).  

Each repair reaction is 
paired with a control of  
“Mock” repair reaction, in which no cell extract is added. The relative percentage 
of each structure-containing DNA is unchanged in the control. 

Following in vitro repair of the SI-DNAs (nicked 5’ of the G-rich strand at site A), 
an increase in the formation of homoduplexed and S-DNA species is observed, 
with a correlating decrease in the amount of SI-DNA material. 

• DNA metabolism, specifically repair, is thought to promote ongoing 
disease-associated repeat expansion. 

• Processing of the C9orf72 repeat during DNA repair remains 
uncharacterized. This in vitro assay aims to assess the effect of: 
• nick location on directing repair. 
• size of the repeat slip-out on repair efficiency. 
• DNA metabolic proteins on repair outcome.  

• DNA plasmid substrates with n = 6, 25, or 42 (G4C2•G2C4) repeats 
were constructed to contain nickase recognition sites. 

• Preliminary repair assay results indicate an ability to process the 
slipped heteroduplex (SI-DNA) structures to multiple forms.

• Previous work has demonstrated that expanded repeat sequences 
undergo DNA metabolism differently than non-repetitive sequences. 

• (CAG•CTG) repeat-containing DNA sequences have shown that:  
• nick location relative to the repeat sequence effects efficiency of 

repair → result in either an expansion or contraction product. 
• repeat slip-out size changes the ability for DNA repair to occur, 

with larger slip-outs being poorly repaired. 
• DNA metabolic proteins can affect repair outcome, promoting 

disease-associated expansions in some cases.
• The mismatch repair protein MutSβ, which can bind slip-outs for 

repair, has been  
shown to promote  
error-prone  
repair (see  
image at right). 

• Absence of  
MutSβ induces  
contractions  
in mouse models, 
making it an attractive target.

Figure 2. Nicking efficiency is tested prior to linearization 
and post-structure-induction. (A) Circular plasmid 
constructs are tested. Supercoiled and linear controls are run 
alongside nicked plasmids to compare migration of the forms 
of DNA in agarose. Efficient nicking at all sites is observed. 
(B) The same DNA substrates, now linearized +/- structures, 
are assessed on a denaturing PAG for changes in migration 
following nicking. Homoduplex nicked DNA is resolved.

• Homoduplexed DNAs of known 
repeat lengths are run alongside 
non-repaired heteroduplexed 
(SI-DNA) substrate(s). 

• In vitro repair products are run 
alongside the controls, and 
evaluated by densitometric 
analysis. 

• Level of repair is determined by 
the amount of product that co-
migrates with the homoduplexed 
DNA versus the SI-DNA.  

• S t rand b ias fo r repa i r i s 
determined by the repeat length 
of the product. 

n = 6

n = 25

Establishment of the in vitro repair assay for C9orf72 requires: 

• optimization of the NEase assay to clearly visualize nicked vs. 
non-nicked linear fragments containing slipped-DNA structures. 

• exploration of alternative avenues for the NEase assay (mung 
bean nuclease, snake venom phosphodiesterase, PARP binding). 

• calibration of the in vitro repair products using short, synthetically-
synthesized and highly-pure repeat-containing linear substrates 

The C9orf72 in vitro repair assay holds great potential for exploration 
of the effects of DNA metabolic proteins on G-rich sequences. In 
particular, this assay provides a methodical and reproducible 
approach for exploration of how highly stable quadruplex structures 
formed by this sequence affect DNA metabolism. The results of this 
will inform understanding of secondary and tertiary structure on DNA 
repair, and may uncover potential therapeutic targets.


